pcn设计问题集第Y部分从pcb如何选材到运用等一系列问题进行总结。1、如何选择PCB板材?选择PCB板材必须在满足设计需求和可量产性及成本中间取得平衡点。设计需求包含电气和机构这两部分。通常在设计非常高速的PCB板子(大于GHz的频率)时这材质问题会比较重要。例如,现在常用的FR-4材质,在几个GHz的频率时的介质损耗(dielectric loss)会对信号衰减有很大的影响,可能就不合用。就电气而言,要注意介电常数(dielectric constant)和介质损在所设计的频率是否合用。2、如何避免高频干扰?避免高频干扰的基本思路是尽量降低高频信号电磁场的干扰,也就是所谓的串扰(Crosstalk)。可用拉大高速信号和模拟信号之间的距离,或加ground guard/shunt traces在模拟信号旁边。还要注意数字地对模拟地的噪声干扰。3、在高速设计中,如何解决信号的完整性问题?信号完整性基本上是阻抗匹配的问题。而影响阻抗匹配的因素有信号源的架构和输出阻抗(output impedance),走线的特性阻抗,负载端的特性,走线的拓朴(topology)架构等。解决的方式是靠端接(termination)与调整走线的拓朴。
在PCB(印制电路板)中,印制导线用来实现电路元件和器件之间电气连接,是PCB中的重要组件,PCB导线多为铜线,铜自身的物理特性也导致其在导电过程中必然存在一定的阻抗,导线中的电感成分会影响电压信号的传输,而电阻成分则会影响电流信号的传输,在高频线路中电感的影响尤为严重,因此,在PCB设计中必须注意和消除印制导线阻抗所带来的影响。1印制导线产生干扰的原因PCB上的印制导线通电后在直流或交流状态下分别对电流呈现电阻或感抗,而平行导线之间存在电感效应,电阻效应,电导效应,互感效应;一根导线上的变化电流必然影响另一根导线,从而产生干扰;PCB板外连接导线甚至元器件引线都可能成为发射或接收干扰信号的天线。印制导线的直流电阻和交流阻抗可以通过公式和公式来计算,R=PL/S和XL=2πfL式中L为印制导线长度(m),s为导线截面积(mm2),ρ为铜的电阻率,TT为常数,f为交流频率。正是由于这些阻抗的存在,从而产生一定的电位差,这些电位差的存在,必然会带来干扰,从而影响电路的正常工作。2 PCB电流与导线宽度的关系PCB导线宽度与电路电流承载值有关,一般导线越宽,承载电流的能力越强。在实际的PCB制作过程中,导线宽度应以能满足电气性能要求而又便于生产为宜,它的最小值以承受的电流大小而定,导线宽度和间距可取0.3mm(12mil)。导线的宽度在大电流的情况下还要考虑其温升问题。PCB设计铜铂厚度、线宽
通讯与计算机技术的高速发展使得高速PCB设计进入了千兆位领域,新的高速器件应用使得如此高的速率在背板和单板上的长距离传输成为可能,但与此同时,PCB设计中的信号完整性问题(SI)、电源完整性以及电磁兼容方面的问题也更加突出。信号完整性是指信号在信号线上传输的质量,主要问题包括反射、振荡、时序、地弹和串扰等。信号完整性差不是由某个单一因素导致,而是板级设计中多种因素共同引起。在千兆位设备的PCB板设计中,一个好的信号完整性设计要求工程师全面考虑器件、传输线互联方案、电源分配以及EMC方面的问题。高速PCB设计EDA工具已经从单纯的仿真验证发展到设计和验证相结合,帮助设计者在设计早期设定规则以避免错误而不是在设计后期发现问题。随着数据速率越来越高设计越来越复杂,高速PCB系统分析工具变得更加必要,这些工具包括时序分析、信号完整性分析、设计空间参数扫描分析、EMC设计、电源系统稳定性分析等。这里我们将着重讨论在千兆位设备PCB设计中信号完整性分析应考虑的一些问题。高速器件与器件模型尽管千兆位发送与接收元器件供应商会提供有关芯片的设计资料,但是器件供应商对于新器件信号完整性的了解也存在一个过程,这样器件供应商给出的设计指南可能并不成熟,还有就是器件供应商给出的设计约束条件通常都是非常苛刻的,对设计工程师来说要满足所有的设计规则会非常困难。所以就需要信号完整性工程师运用仿真分析工具对供应商的约束规则和实际设计进行分析,考察和优化元器件选择、拓扑结构、匹配方案、匹配元器件的值,并最终开发出确保信号完整性的PCB布局布线规则。因此,千兆位信号的精确仿真分析变得十分重要,而器件模型在信号完整性分析工作中的作用也越来越得到重视。
专业贴片SMT在PCB板的设计当中,可以通过分层、恰当的布局布线和安装实现PCB的抗ESD设计。在设计过程中,专业贴片SMT加工厂通过预测可以将绝大多数设计修改仅限于增减元器件。通过调整PCB布局布线,能够很好地防范ESD。以下是一些常见的防范措施。1、尽可能使用多层PCB相对于双面PCB而言,地平面和电源平面,以及排列紧密的信号线-地线间距能够减小共模阻抗和感性耦合,使之达到双面PCB的1/10到1/100。尽量地将每一个信号层都紧靠一个电源层或地线层。对于顶层和底层表面都有元器件、具有很短连接线以及许多填充地的高密度PCB,可以考虑使用内层线。2、对于双面PCB来说,要采用紧密交织的电源和地栅格。电源线紧靠地线,在垂直和水平线或填充区之间,要尽可能多地连接。一面的栅格尺寸小于等于60mm,如果可能,栅格尺寸应小于13mm。3、确保每一个电路尽可能紧凑。4、尽可能将所有连接器都放在一边。5、在每一层的机箱地和电路地之间,要设置相同的“隔离区”;如果可能,保持间隔距离为0.64mm。6、PCB装配时,不要在顶层或者底层的焊盘上涂覆任何焊料。使用具有内嵌垫圈的螺钉来实现PCB与金属机箱/屏蔽层或接地面上支架的紧密接触。
解决EMI问题的办法很多,现代的EMI抑制方法包括:利用EMI抑制涂层、选用合适的EMI抑制零配件和EMI仿真设计等。本文从最基本的PCB布板出发,讨论PCB分层堆叠在控制EMI辐射中的作用和设计技巧。电源汇流排在IC的电源引脚附近合理地安置适当容量的电容,可使IC输出电压的跳变来得更快。然而,问题并非到此为止。由于电容呈有限频率响应的特性,这使得电容无法在全频带上生成干净地驱动IC输出所需要的谐波功率。除此之外,电源汇流排上形成的瞬态电压在去耦路径的电感两端会形成电压降,这些瞬态电压就是主要的共模EMI干扰源。我们应该怎么解决这些问题?就我们电路板上的IC而言,IC周围的电源层可以看成是优良的高频电容器,它可以收集为干净输出提供高频能量的分立电容器所泄漏的那部份能量。此外,优良的电源层的电感要小,从而电感所合成的瞬态信号也小,进而降低共模EMI。当然,电源层到IC电源引脚的连线必须尽可能短,因为数位信号的上升沿越来越快,最好是直接连到IC电源引脚所在的焊盘上,这要另外讨论。为了控制共模EMI,电源层要有助于去耦和具有足够低的电感,这个电源层必须是一个设计相当好的电源层的配对。有人可能会问,好到什么程度才算好?问题的答案取决于电源的分层、层间的材料以及工作频率(即IC上升时间的函数)。通常,电源分层的间距是6mil,夹层是FR4材料,则每平方英寸电源层的等效电容约为75pF。显然,层间距越小电容越大。