这里主要是说了从PCB设计封装来解析选择元件的技巧。元件的封装包含很多信息,包含元件的尺寸,特别是引脚的相对位置关系,还有元件的焊盘类型。当然我们根据元件封装选择元件时还有一个要注意的地方是要考虑元件的外形尺寸。引脚位置关系:主要是指我们需要将实际的元件的引脚和PCB元件的封装的尺寸对应起来。我们选择不同的元件,虽然功能相同,但是元件的封装很可能不一样。我们需要保证PCB焊盘尺寸位置正确才能保证元件能正确焊接。焊盘的选择:这个是我们需要考虑的比较多的地方。首先包括焊盘的类型。其类型包括两种,一是电镀通孔,一种是表贴类型。我们需要考虑的因素有器件成本、可用性、器件面积密度和功耗等因数。从制造角度看,表贴器件通常要比通孔器件便宜,而且一般可用性较高。对于我们一般设计来说,我们选择表贴元件,不仅方便手工焊接,而且有利于查错和调试过程中更好的连接焊盘和信号。其次我们还应该注意焊盘的位置。因为不同的位置,就代表元件实际当中不同的位置。我们如果不合理安排焊盘的位置,很有可能就会出现一个区域元件过密,而另外一个区域元件很稀疏的情况,当然情况更糟糕的是由于焊盘位置过近,导致元件之间空隙过小而无法焊接,下面就是我失败的一个例子,我在一个光耦开关旁边开了通孔,但是由于它们的位置过近,导致光耦开关焊接上去以后,通孔无法再放置螺丝了。
在基于信号完整性计算机分析的PCB设计方法中,最为核心的部分就是PCB板级信号完整性模型的建立,这是与传统的设计方法的区别之处。SI模型的正确性将决定设计的正确性,而SI模型的可建立性则决定了这种设计方法的可行性。目前构成器件模型的方法有两种:一种是从元器件的电学工作特性出发,把元器件看成‘黑盒子’,测量其端口的电气特性,提取器件模型,而不涉及器件的工作原理,称为行为级模型。这种模型的代表是IBIS模型和S参数。其优点是建模和使用简单方便,节约资源,适用范围广泛,特别是在高频、非线性、大功率的情况下行为级模型是一个选择。缺点是精度较差,一致性不能保证,受测试技术和精度的影响。另一种是以元器件的工作原理为基础,从元器件的数学方程式出发,得到的器件模型及模型参数与器件的物理工作原理有密切的关系。SPICE 模型是这种模型中应用最广泛的一种。其优点是精度较高,特别是随着建模手段的发展和半导体工艺的进步和规范,人们已可以在多种级别上提供这种模型,满足不同的精度需要。缺点是模型复杂,计算时间长。一般驱动器和接收器的模型由器件厂商提供,传输线的模型通常从场分析器中提取,封装和连接器的模型即可以由场分析器提取,又可以由制造厂商提供。在电子设计中已经有多种可以用于PCB板级信号完整性分析的模型,其中最为常用的有三种,分别是SPICE、IBIS和Verilog-AMS、VHDL-AMS。
专业PCB抄板设计大量涉及蚀刻面的质量问题都集中在上板面被蚀刻的部分,而这些问题来自于蚀刻剂所产生的胶状板结物的影响。专业PCB抄板设计生产商对这一点的了解是十分重要的,因胶状板结物堆积在铜表面上。一方面会影响喷射力,另一方面会阻档了新鲜蚀刻液的补充,使蚀刻的速度被降低。正因胶状板结物的形成和堆积,使得基板上下面的图形的蚀刻程度不同,先进入的基板因堆积尚未形成,蚀刻速度较快, 故容易被彻底地蚀刻或造成过腐蚀,而后进入的基板因堆积已形成,而减慢了蚀刻的速度。蚀刻设备的维护维护蚀刻设备的最关键因素就是要保证喷嘴的高清洁度及无阻塞物,使喷嘴能畅顺地喷射。阻塞物或结渣会使喷射时产生压力作用,冲击板面。而喷嘴不清洁,则会造成蚀刻不均匀而使整块电路板报废。明显地,设备的维护就是更换破损件和磨损件,因喷嘴同样存在着磨损的问题,所以更换时应包括喷嘴。此外,更为关键的问题是要保持蚀刻机没有结渣,因很多时结渣堆积过多会对蚀刻液的化学平衡产生影响。同样地,如果蚀刻液出现化学不平衡,结渣的情况就会愈加严重。蚀刻液突然出现大量结渣时,通常是一个信号,表示溶液的平衡出现了问题,这时应使用较强的盐酸作适当的清洁或对溶液进行补加。
随着PCB设计复杂度的逐步提高,对于信号完整性的分析除了反射,串扰以及EMI之外,稳定可靠的电源供应也成为设计者们重点研究的方向之一。尤其当开关器件数目不断增加,核心电压不断减小的时候,电源的波动往往会给系统带来致命的影响,于是人们提出了新的名词:电源完整性,简称PI(powerintegrity)。当今国际市场上,IC设计比较发达,但电源完整性设计还是一个薄弱的环节。因此本文提出了PCB板中电源完整性问题的产生,分析了影响电源完整性的因素并提出了解决PCB板中电源完整性问题的优化方法与经验设计,具有较强的理论分析与实际工程应用价值。二、电源噪声的起因及分析对于电源噪声的起因我们通过一个与非门电路图进行分析。图1中的电路图为一个三输入与非门的结构图,因为与非门属于数字器件,它是通过“1”和“0”电平的切换来工作的。随着IC技术的不断提高,数字器件的切换速度也越来越快,这就引进了更多的高频分量,同时回路中的电感在高频下就很容易引起电源波动。如在图1中,当与非门输入全为高电平时,电路中的三极管导通,电路瞬间短路,电源向电容充电,同时流入地线。此时由于电源线和地线上存在寄生电感,我们由公式V=LdI/dt可知,这将在电源线和地线上产生电压波动,如图2中所示的电平上升沿所引入的ΔI噪声。当与非门输入为低电平时,此时电容放电,将在地线上产生较大的ΔI噪声;而电源此时只有电路的瞬间短路所引起的电流突变,由于不存在向电容充电而使电流突变相对于上升沿来说要小。从对与非门的电路进行分析我们知道,造成电源不稳定的根源主要在于两个方面:一是器件高速开关状态下,瞬态的交变电流过大;