1.系统布局是否保证布线的合理或者最优,是否能保证布线的可靠进行,是否能保证电路工作的可靠性。在布局的时候需要对信号的走向以及电源和地线网络有整体的了解和规划。2.印制板尺寸是否与加工图纸尺寸相符,能否符合PCB制造工艺要求、有无行为标记。这一点需要特别注意,不少PCB板的电路布局和布线都设计得很漂亮、合理,但是疏忽了定位接插件的精确定位,导致设计的电路无法和其他电路对接。3.元件在二维、三维空间上有无冲突。注意器件的实际尺寸,特别是器件的高度。在焊接免布局的元器件,高度一般不能超过3mm。4.元件布局是否疏密有序、排列整齐,是否全部布完。在元器件布局的时候,不仅要考虑信号的走向和信号的类型、需要注意或者保护的地方,同时也要考虑器件布局的整体密度,做到疏密均匀。5.需经常更换的元件能否方便地更换,插件板插入设备是否方便。应保证经常更换的元器件的更换和接插的方便和可靠。6.调整可调元件是否方便。7.热敏元件与发热元件之间是否有适当的距离。8.在需要散热的地方是否装有散热器或者风扇,空气流是否通畅。应注意元器件和电路板的散热。9.信号走向是否顺畅且互连最短。10.插头、插座等与机械设计是否矛盾。11.线路的干扰问题是否有所考虑。12.电路板的机械强度和性能是否有所考虑。13.电路板布局的艺术性及其美观性。
山东开发SMT插件一、PCB沉金采用的是化学沉积的方法,通过化学氧化还原反应的方法生成一层镀层,一般厚度较厚,开发SMT插件是化学镍金金层沉积方法的一种,可以达到较厚的金层。二、PCB镀金采用的是电解的原理,也叫电镀方式。其他金属表面处理也多数采用的是电镀方式。在实际产品应用中,90%的金板是沉金板,因为镀金板焊接性差是他的致命缺点,也是导致很多公司放弃镀金工艺的直接原因!沉金工艺在印制线路表面上沉积颜色稳定,光亮度好,镀层平整,可焊性良好的镍金镀层。基本可分为四个阶段:前处理(除油,微蚀,活化、后浸),沉镍,沉金,后处理(废金水洗,DI水洗,烘干)。沉金厚度在0.025-0.1um间。金应用于电路板表面处理,因为金的导电性强,抗氧化性好,寿命长,而镀金板与沉金板最根本的区别在于,镀金是硬金(耐磨),沉金是软金(不耐磨)。1、沉金与镀金所形成的晶体结构不一样,沉金对于金的厚度比镀金要厚很多,沉金会呈金黄色,较镀金来说更黄(这是区分镀金和沉金的方法之一),镀金的会稍微发白(镍的颜色)。2、沉金与镀金所形成的晶体结构不一样,沉金相对镀金来说更容易焊接,不会造成焊接不良。沉金板的应力更易控制,对有邦定的产品而言,更有利于邦定的加工。同时也正因为沉金比镀金软,所以沉金板做金手指不耐磨(沉金板的缺点)。3、PCB沉金板只有焊盘上有镍金,趋肤效应中信号的传输是在铜层不会对信号有影响。4、沉金较镀金来说晶体结构更致密,不易产成氧化。5、随着电路板加工精度要求越来越高,线宽、间距已经到了0.1mm以下。镀金则容易产生金丝短路。沉金板只有焊盘上有镍金,所以不容易产成金丝短路。
一个布局是否合理没有判断标准,可以采用一些相对简单的标准来判断布局的优劣。最常用的标准就是使飞线总长度尽可能短。一般来说,飞线总长度越短,意味着布线总长度也是越短(注意:这只是相对于大多数情况是正确的,并不是完全正确);走线越短,走线所占据的印制板面积也就越小,布通率越高。在走线尽可能短的同时,还必须考虑布线密度的问题。如何布局才能使飞线总长度最短并且保证布局密度不至于过高而不能实现是个很复杂的问题。因为,调整布局就是调整封装的放置位置,一个封装的焊盘往往和几个甚至几十个网络同时相关联,减小一个网络飞线长度可能会增长另一个网络的飞线长度。如何能够调整封装的位置到最佳点实在给不出太实用的标准,实际操作时,主要依靠设计者的经验观查屏幕显示的飞线是否简捷、有序和计算出的总长度是否最短。飞线是手工布局和布线的主要参考标准,手工调整布局时尽量使飞线走最短路径,手工布线时常常按照飞线指示的路径连接各个焊盘。Protel的飞线优化算法可以有效地解决飞线连接的最短路径问题。飞线的连接策略Protel提供了两种飞线连接方式供使用者选择:顺序飞线和最短树飞线。在布线参数设置中的飞线模式页可以设置飞线连接策略,应该选择最短树策略。动态飞线在有关飞线显示和控制一节中已经讲到: 执行显示网络飞线、显示封装飞线和显示全部飞线命令之一后飞线显示开关打开,执行隐含全部飞线命令后飞线显示开关关闭。
1. 从原理图到PCB的设计流程建立元件参数——>输入原理网表->设计参数设置->手工布局->手工布线->验证设计——>复查->CAM输出。2. 参数设置相邻导线间距必须能满足电气安全要求,而且为了便于操作和生产,间距也应尽量宽些。最小间距至少要能适合承受的电压,在布线密度较低时,信号线的间距可适当地加大,对高、低电平悬殊的信号线应尽可能地短且加大间距,一般情况下将走线间距设为8mil。焊盘内孔边缘到印制板边的距离要大于1mm,这样可以避免加工时导致焊盘缺损。当与焊盘连接的走线较细时,要将焊盘与走线之间的连接设计成水滴状,这样的好处是焊盘不容易起皮,而是走线与焊盘不易断开。3. 元器件布局实践证明,即使电路原理图设计正确,印制电路板设计不当,也会对电子设备的可靠性产生不利影响。例如,如果印制板两条细平行线靠得很近,则会形成信号波形的延迟,在传输线的终端形成反射噪声;由于电源、地线的考虑不周到而引起的干扰,会使产品的性能下降,因此,在设计印制电路板的时候,应注意采用正确的方法。每一个开关电源都有四个电流回路:◆ 电源开关交流回路◆ 输出整流交流回路◆ 输入信号源电流回路◆ 输出负载电流回路输入回路通过一个近似直流的电流对输入电容充电,滤波电容主要起到一个宽带储能作用;类似地,输出滤波电容也用来储存来自输出整流器的高频能量,同时消除输出负载回路的直流能量。所以,输入和输出滤波电容的接线端十分重要,输入及输出电流回路应分别只从滤波电容的接线端连接到电源;如果在输入/输出回路和电源开关/整流回路之间的连接无法与电容的接线端直接相连,交流能量将由输入或输出滤波电容并辐射到环境中去。电源开关交流回路和整流器的交流回路包含高幅梯形电流,这些电流中谐波成分很高,其频率远大于开关基频,峰值幅度可高达持续输入/输出直流电流幅度的5倍,过渡时间通常约为50ns。这两个回路最容易产生电磁干扰,因此必须在电源中其它印制线布线之前先布好这些交流回路,每个回路的三种主要的元件滤波电容、电源开关或整流器、电感或变压器应彼此相邻地进行放置,调整元件位置使它们之间的电流路径尽可能短。
随着PCB设计复杂度的逐步提高,对于信号完整性的分析除了反射,串扰以及EMI之外,稳定可靠的电源供应也成为设计者们重点研究的方向之一。尤其当开关器件数目不断增加,核心电压不断减小的时候,电源的波动往往会给系统带来致命的影响,于是人们提出了新的名词:电源完整性,简称PI(powerintegrity)。当今国际市场上,IC设计比较发达,但电源完整性设计还是一个薄弱的环节。因此本文提出了PCB板中电源完整性问题的产生,分析了影响电源完整性的因素并提出了解决PCB板中电源完整性问题的优化方法与经验设计,具有较强的理论分析与实际工程应用价值。二、电源噪声的起因及分析对于电源噪声的起因我们通过一个与非门电路图进行分析。图1中的电路图为一个三输入与非门的结构图,因为与非门属于数字器件,它是通过“1”和“0”电平的切换来工作的。随着IC技术的不断提高,数字器件的切换速度也越来越快,这就引进了更多的高频分量,同时回路中的电感在高频下就很容易引起电源波动。如在图1中,当与非门输入全为高电平时,电路中的三极管导通,电路瞬间短路,电源向电容充电,同时流入地线。此时由于电源线和地线上存在寄生电感,我们由公式V=LdI/dt可知,这将在电源线和地线上产生电压波动,如图2中所示的电平上升沿所引入的ΔI噪声。当与非门输入为低电平时,此时电容放电,将在地线上产生较大的ΔI噪声;而电源此时只有电路的瞬间短路所引起的电流突变,由于不存在向电容充电而使电流突变相对于上升沿来说要小。从对与非门的电路进行分析我们知道,造成电源不稳定的根源主要在于两个方面:一是器件高速开关状态下,瞬态的交变电流过大;
一、沉金板与镀金板的区别二、为什么要用镀金板随着IC 的集成度越来越高,IC脚也越多越密。而垂直喷锡工艺很难将成细的焊盘吹平整,这就给SMT的贴装带来了难度;另外喷锡板的待用寿命(shelf life)很短。而镀金板正好解决了这些问题: 1对于表面贴装工艺,尤其对于0603及0402 超小型表贴,因为焊盘平整度直接关系到锡膏印制工序的质量,对后面的再流焊接质量起到决定性影响,所以,整板镀金在高密度和超小型表贴工艺中时常见到。2在试制阶段,受元件采购等因素的影响往往不是板子来了马上就焊,而是经常要等上几个星期甚至个把月才用,镀金板的待用寿命(shelf life)比铅锡合金长很多倍所以大家都乐意采用。再说镀金PCB在度样阶段的成本与铅锡合金板相比相差无几。但随着布线越来越密,线宽、间距已经到了3-4MIL。因此带来了金丝短路的问题:随着信号的频率越来越高,因趋肤效应造成信号在多镀层中传输的情况对信号质量的影响越明显:趋肤效应是指:高频的交流电,电流将趋向集中在导线的表面流动。根据计算,趋肤深度与频率有关:镀金板的其它缺点在沉金板与镀金板的区别表中已列出。