从IC芯片的发展及封装形式来看,芯片体积越来越小、引脚数越来越多;同时,由于近年来IC工艺的发展,使得其速度也越来越高。这就带来了一个问题,即电子设计的体积减小导致电路的布局布线密度变大,而同时信号的频率还在提高,从而使得如何处理高速信号问题成为一个设计能否成功的关键因素。随着电子系统中逻辑复杂度和时钟频率的迅速提高,信号边沿不断变陡,印刷电路板的线迹互连和板层特性对系统电气性能的影响也越发重要。对于低频设计,线迹互连和板层的影响可以不考虑,但当频率超过50 MHz时,互连关系必须考虑,而在*定系统性能时还必须考虑印刷电路板板材的电参数。因此,高速系统的设计必须面对互连延迟引起的时序问题以及串扰、传输线效应等信号完整性(Signal Integrity,SI)问题。当硬件工作频率增高后,每一根布线网络上的传输线都可能成为发射天线,对其他电子设备产生电磁辐射或与其他设备相互干扰,从而使硬件时序逻辑产生混乱。电磁兼容性(Electromagnetic Compatibility,EMC)的标准提出了解决硬件实际布线网络可能产生的电磁辐射干扰以及本身抵抗外部电磁干扰的基本要求。1 高速数字电路设计的几个基本概念在高速数字电路中,由于串扰、反射、过冲、振荡、地弹、偏移等信号完整性问题,本来在低速电路中无需考虑的因素在这里就显得格外重要;另外,随着现有电气系统耦合结构越来越复杂,电磁兼容性也变成了一个不能不考虑的问题。要解决高速电路设计的问题,首先需要真正明白高速信号的概念。高速不是就频率的高低来说的,而是由信号的边沿速度决定的,一般认为上升时间小于4倍信号传输延迟时可视为高速信号。即使在工作频率不高的系统中,也会出现信号完整性的问题。这是由于随着集成电路工艺的提高,所用器件I/O端口的信号边沿比以前更陡更快,因此在工作时钟不高的情况下也属于高速器件,随之带来了信号完整性的种种问题。
湖南厂家SMT焊接(一) 画好原理图很多工程师都觉得layout工作更重要一些,原理图就是为了生成网表方便PCB做检查用的。SMT焊接生产商其实,在后续电路调试过程中原理图的作用会更大一些。无论是查找问题还是和同事交流,还是原理图更直观更方便。另外养成在原理图中做标注的习惯,把各部分电路在layout的时候要注意到的问题标注在原理图上,对自己或者对别人都是一个很好的提醒。层次化原理图,把不同功能不同模块的电路分成不同的页,这样无论是读图还是以后重复使用都能明显的减少工作量。使用成熟的设计总是要比设计新电路的风险小。每次看到把所有电路都放在一张图纸上,一片密密麻麻的器件,脑袋就能大一圈。(二) 好好进行电路布局心急的工程师画完原理图,把网表导入PCB后就迫不及待的把器件放好,开始拉线。其实一个好的PCB布局能让你后面的拉线工作变得简单,让你的PCB工作的更好。每一块板子都会有一个信号路径,PCB布局也应该尽量遵循这个信号路径,让信号在板子上可以顺畅的传输,人们都不喜欢走迷宫,信号也一样。如果原理图是按照模块设计的,PCB也一样可以。按照不同的功能模块可以把板子划分为若干区域。模拟数字分开,电源信号分开,发热器件和易感器件分开,体积较大的器件不要太靠近板边,注意射频信号的屏蔽等等……多花一分的时间去优化PCB的布局,就能在拉线的时候节省更多的时间。
1.布局首先,要考虑PCB尺寸大小。PCB尺寸过大时,印制线条长,阻抗增加,抗噪声能力下降,成本也增加;过小,则散热不好,且邻近线条易受干扰。在确定PCB尺寸后.再确定特殊元件的位置。最后,根据电路的功能单元,对电路的全部元器件进行布局。在确定特殊元件的位置时要遵守以下原则:(1)尽可能缩短高频元器件之间的连线,设法减少它们的分布参数和相互间的电磁干扰。易受干扰的元器件不能相互挨得太近,输入和输出元件应尽量远离。(2)某些元器件或导线之间可能有较高的电位差,应加大它们之间的距离,以免放电引出意外短路。带高电压的元器件应尽量布置在调试时手不易触及的地方。(3)应留出印制扳定位孔及固定支架所占用的位置。根据电路的功能单元.对电路的全部元器件进行布局时,要符合以下原则:(1)按照电路的流程安排各个功能电路单元的位置,使布局便于信号流通,并使信号尽可能保持一致的方向。(2)以每个功能电路的核心元件为中心,围绕它来进行布局。元器件应均匀、整齐、紧凑地排列在PCB上.尽量减少和缩短各元器件之间的引线和连接。(3)在高频下工作的电路,要考虑元器件之间的分布参数。一般电路应尽可能使元器件平行排列。这样,不但美观.而且装焊容易.易于批量生产。(4)位于电路板边缘的元器件,离电路板边缘一般不小于2mm。电路板的最佳形状为矩形。
这里主要是说了从PCB设计封装来解析选择元件的技巧。元件的封装包含很多信息,包含元件的尺寸,特别是引脚的相对位置关系,还有元件的焊盘类型。当然我们根据元件封装选择元件时还有一个要注意的地方是要考虑元件的外形尺寸。引脚位置关系:主要是指我们需要将实际的元件的引脚和PCB元件的封装的尺寸对应起来。我们选择不同的元件,虽然功能相同,但是元件的封装很可能不一样。我们需要保证PCB焊盘尺寸位置正确才能保证元件能正确焊接。焊盘的选择:这个是我们需要考虑的比较多的地方。首先包括焊盘的类型。其类型包括两种,一是电镀通孔,一种是表贴类型。我们需要考虑的因素有器件成本、可用性、器件面积密度和功耗等因数。从制造角度看,表贴器件通常要比通孔器件便宜,而且一般可用性较高。对于我们一般设计来说,我们选择表贴元件,不仅方便手工焊接,而且有利于查错和调试过程中更好的连接焊盘和信号。其次我们还应该注意焊盘的位置。因为不同的位置,就代表元件实际当中不同的位置。我们如果不合理安排焊盘的位置,很有可能就会出现一个区域元件过密,而另外一个区域元件很稀疏的情况,当然情况更糟糕的是由于焊盘位置过近,导致元件之间空隙过小而无法焊接,下面就是我失败的一个例子,我在一个光耦开关旁边开了通孔,但是由于它们的位置过近,导致光耦开关焊接上去以后,通孔无法再放置螺丝了。
在高速设计中,可控阻抗板和线路的特性阻抗问题困扰着许多中国工程师。本文通过简单而且直观的方法介绍了特性阻抗的基本性质、计算和测量方法。在高速设计中,可控阻抗板和线路的特性阻抗是最重要和最普遍的问题之一。首先了解一下传输线的定义:传输线由两个具有一定长度的导体组成,一个导体用来发送信号,另一个用来接收信号(切记“回路”取代“地”的概念)。在一个多层板中,每一条线路都是传输线的组成部分,邻近的参考平面可作为第二条线路或回路。一条线路成为“性能良好”传输线的关键是使它的特性阻抗在整个线路中保持恒定。线路板成为“可控阻抗板”的关键是使所有线路的特性阻抗满足一个规定值,通常在25欧姆和70欧姆之间。在多层线路板中,传输线性能良好的关键是使它的特性阻抗在整条线路中保持恒定。但是,究竟什么是特性阻抗?理解特性阻抗最简单的方法是看信号在传输中碰到了什么。当沿着一条具有同样横截面传输线移动时,这类似图1所示的微波传输。假定把1伏特的电压阶梯波加到这条传输线中,如把1伏特的电池连接到传输线的前端(它位于发送线路和回路之间),一旦连接,这个电压波信号沿着该线以光速传播,它的速度通常约为6英寸/纳秒。当然,这个信号确实是发送线路和回路之间的电压差,它可以从发送线路的任何一点和回路的相临点来衡量。图2是该电压信号的传输示意图。Zen的方法是先“产生信号”,然后沿着这条传输线以6英寸/纳秒的速度传播。第Y个0.01纳秒前进了0.06英寸,这时发送线路有多余的正电荷,而回路有多余的负电荷,正是这两种电荷差维持着这两个导体之间的1伏电压差,而这两个导体又组成了一个电容器。在下一个0.01纳秒中,又要将一段0.06英寸传输线的电压从0调整到1伏特,这必须加一些正电荷到发送线路,而加一些负电荷到接收线路。每移动0.06英寸,必须把更多的正电荷加到发送线路,而把更多的负电荷加到回路。每隔0.01纳秒,必须对传输线路的另外一段进行充电,然后信号开始沿着这一段传播。电荷来自传输线前端的电池,当沿着这条线移动时,就给传输线的连续部分充电,因而在发送线路和回路之间形成了1伏特的电压差。每前进0.01纳秒,就从电池中获得一些电荷(±Q),恒定的时间间隔(±t)内从电池中流出的恒定电量(±Q)就是一种恒定电流。流入回路的负电流实际上与流出的正电流相等,而且正好在信号波的前端,交流电流通过上、下线路组成的电容,结束整个循环过程。
一、PCB沉金采用的是化学沉积的方法,通过化学氧化还原反应的方法生成一层镀层,一般厚度较厚,是化学镍金金层沉积方法的一种,可以达到较厚的金层。二、PCB镀金采用的是电解的原理,也叫电镀方式。其他金属表面处理也多数采用的是电镀方式。在实际产品应用中,90%的金板是沉金板,因为镀金板焊接性差是他的致命缺点,也是导致很多公司放弃镀金工艺的直接原因!沉金工艺在印制线路表面上沉积颜色稳定,光亮度好,镀层平整,可焊性良好的镍金镀层。基本可分为四个阶段:前处理(除油,微蚀,活化、后浸),沉镍,沉金,后处理(废金水洗,DI水洗,烘干)。沉金厚度在0.025-0.1um间。金应用于电路板表面处理,因为金的导电性强,抗氧化性好,寿命长,而镀金板与沉金板最根本的区别在于,镀金是硬金(耐磨),沉金是软金(不耐磨)。1、沉金与镀金所形成的晶体结构不一样,沉金对于金的厚度比镀金要厚很多,沉金会呈金黄色,较镀金来说更黄(这是区分镀金和沉金的方法之一),镀金的会稍微发白(镍的颜色)。2、沉金与镀金所形成的晶体结构不一样,沉金相对镀金来说更容易焊接,不会造成焊接不良。沉金板的应力更易控制,对有邦定的产品而言,更有利于邦定的加工。同时也正因为沉金比镀金软,所以沉金板做金手指不耐磨(沉金板的缺点)。3、PCB沉金板只有焊盘上有镍金,趋肤效应中信号的传输是在铜层不会对信号有影响。4、沉金较镀金来说晶体结构更致密,不易产成氧化。5、随着电路板加工精度要求越来越高,线宽、间距已经到了0.1mm以下。镀金则容易产生金丝短路。沉金板只有焊盘上有镍金,所以不容易产成金丝短路。6、沉金板只有焊盘上有镍金,所以线路上的阻焊与铜层的结合更牢固。工程在作补偿时不会对间距产生影响。7、对于要求较高的板子,平整度要求要好,一般就采用沉金,沉金一般不会出现组装后的黑垫现象。沉金板的平整性与使用寿命较镀金板要好。所以目前大多数工厂都采用了沉金工艺生产金板。但是沉金工艺比镀金工艺成本更贵(含金量更高),所以依然还有大量的低价产品使用镀金工艺。