覆铜时铜和导线之间的间距要改变覆铜时铜和导线以及焊盘之间的间距,方法如下:设计—规则—Electrical—clearance,点右键建立“新规则”,出现clearance_1,在clearance_1规则中“第Y个对象匹配哪里”栏中选中“高级(查询)”,在右边的“全查询”栏中输入(InPoly),最后点“应用”结束。如果输入不对,选则“所有”后再选“高级(查询)”。pcb中放置某个器件时无论如何都报错在pcb中放置某个元件时,无论如何都报错,解决办法是将规则里的线间距改小。如何选中所有连在一起的线或同一网络的线按住“Ctrl”左键单击想要选中的网络线即可。无意中按出来个放大镜在无意中按出来个放大镜,用“SHIFT+M”取消或者选菜单项“工具”——“优先选项”——“pcb Editor”——“Board Insight Lens”,勾选或取消“可视”即可。
(一) 细节决定成败PCB设计是一个细致的工作,需要的就是细心和耐心。刚开始做设计的新手经常犯的错误就是一些细节错误。器件管脚弄错了,器件封装用错了,管脚顺序画反了等等,有些可以通过飞线来解决,有些可能就让一块板子直接变成了废品。画封装的时候多检查一遍,投板之前把封装打印出来和实际器件比一下,多看一眼,多检查一遍不是强迫症,只是让这些容易犯的低级错误尽量避免。否则设计的再好看的板子,上面布满飞线,也就远谈不上优秀了。(二) 学会设置规则其实现在不光高级的PCB设计软件需要设置布线规则,一些简单易用的PCB工具同样可以进行规则设置。人脑毕竟不是机器,那就难免会有疏忽有失误。所以把一些容易忽略的问题设置到规则里面,让电脑帮助我们检查,尽量避免犯一些低级错误。另外,完善的规则设置能更好的规范后面的工作。所谓磨刀不误砍柴工,板子的规模越复杂规则设置的重要性越突出。现在很多EDA工具都有自动布线功能,如果规则设置足够详细,让工具自己帮你去设计,你在一旁喝杯咖啡,不是更惬意的事情吗?(三) 为别人考虑的越多,自己的工作越少在进行PCB设计的时候,尽量多考虑一些最终使用者的需求。比如,如果设计的是一块开发板,那么在进行PCB设计的时候就要考虑放置更多的丝印信息,这样在使用的时候会更方便,不用来回的查找原理图或者找设计人员支持了。如果设计的是一个量产产品,那么就要更多的考虑到生产线上会遇到的问题,同类型的器件尽量方向一致,器件间距是否合适,板子的工艺边宽度等等。这些问题考虑的越早,越不会影响后面的设计,也可以减少后面支持的工作量和改板的次数。看上去开始设计上用的时间增加了,实际上是减少了自己后续的工作量。在板子空间信号允许的情况下,尽量放置更多的测试点,提高板子的可测性,这样在后续调试阶段同样能节省更多的时间,给发现问题提供更多的思路。(四) 画好原理图很多工程师都觉得layout工作更重要一些,原理图就是为了生成网表方便PCB做检查用的。其实,在后续电路调试过程中原理图的作用会更大一些。无论是查找问题还是和同事交流,还是原理图更直观更方便。另外养成在原理图中做标注的习惯,把各部分电路在layout的时候要注意到的问题标注在原理图上,对自己或者对别人都是一个很好的提醒。层次化原理图,把不同功能不同模块的电路分成不同的页,这样无论是读图还是以后重复使用都能明显的减少工作量。使用成熟的设计总是要比设计新电路的风险小。每次看到把所有电路都放在一张图纸上,一片密密麻麻的器件,脑袋就能大一圈。
台湾开发SMT焊接【第Y招】多层板布线高频电路往往集成度较高,布线密度大,采用多层板既是布线所必须,也是降低干扰的有效手段。开发SMT焊接在PCB Layout阶段,合理的选择一定层数的印制板尺寸,能充分利用中间层来设置屏蔽,更好地实现就近接地,并有效地降低寄生电感和缩短信号的传输长度,同时还能大幅度地降低信号的交叉干扰等,所有这些方法都对高频电路的可靠性有利。有资料显示,同种材料时,四层板要比双面板的噪声低20dB。但是,同时也存在一个问题,PCB半层数越高,制造工艺越复杂,单位成本也就越高,这就要求我们在进行PCB Layout时,除了选择合适的层数的PCB板,还需要进行合理的元器件布局规划,并采用正确的布线规则来完成设计。 【第二招】高速电子器件管脚间的引线弯折越少越好 高频电路布线的引线最好采用全直线,需要转折,可用45度折线或者圆弧转折,这种要求在低频电路中仅仅用于提高铜箔的固着强度,而在高频电路中,满足这一要求却可以减少高频信号对外的发射和相互间的耦合。 【第三招】高频电路器件管脚间的引线越短越好 信号的辐射强度是和信号线的走线长度成正比的,高频的信号引线越长,它就越容易耦合到靠近它的元器件上去,所以对于诸如信号的时钟、晶振、DDR的数据、LVDS线、USB线、HDMI线等高频信号线都是要求尽可能的走线越短越好。 【第四招】高频电路器件管脚间的引线层间交替越少越好 所谓“引线的层间交替越少越好”是指元件连接过程中所用的过孔(Via)越少越好。据侧,一个过孔可带来约0.5pF的分布电容,减少过孔数能显著提高速度和减少数据出错的可能性。
在基于信号完整性计算机分析的PCB设计方法中,最为核心的部分就是PCB板级信号完整性模型的建立,这是与传统的设计方法的区别之处。SI模型的正确性将决定设计的正确性,而SI模型的可建立性则决定了这种设计方法的可行性。目前构成器件模型的方法有两种:一种是从元器件的电学工作特性出发,把元器件看成‘黑盒子’,测量其端口的电气特性,提取器件模型,而不涉及器件的工作原理,称为行为级模型。这种模型的代表是IBIS模型和S参数。其优点是建模和使用简单方便,节约资源,适用范围广泛,特别是在高频、非线性、大功率的情况下行为级模型是一个选择。缺点是精度较差,一致性不能保证,受测试技术和精度的影响。另一种是以元器件的工作原理为基础,从元器件的数学方程式出发,得到的器件模型及模型参数与器件的物理工作原理有密切的关系。SPICE 模型是这种模型中应用最广泛的一种。其优点是精度较高,特别是随着建模手段的发展和半导体工艺的进步和规范,人们已可以在多种级别上提供这种模型,满足不同的精度需要。缺点是模型复杂,计算时间长。一般驱动器和接收器的模型由器件厂商提供,传输线的模型通常从场分析器中提取,封装和连接器的模型即可以由场分析器提取,又可以由制造厂商提供。在电子设计中已经有多种可以用于PCB板级信号完整性分析的模型,其中最为常用的有三种,分别是SPICE、IBIS和Verilog-AMS、VHDL-AMS。
如果阻抗变化只发生一次,例如线宽从8mil变到6mil后,一直保持6mil宽度这种情况,要达到突变处信号反射噪声不超过电压摆幅的5%这一噪声预算要求,阻抗变化必须小于10%。这有时很难做到,以 FR4板材上微带线的情况为例,我们计算一下。如果线宽8mil,线条和参考平面之间的厚度为4mil,特性阻抗为46.5欧姆。线宽变化到6mil后特性阻抗变成54.2欧姆,阻抗变化率达到了20%。反射信号的幅度必然超标。至于对信号造成多大影响,还和信号上升时间和驱动端到反射点处信号的时延有关。但至少这是一个潜在的问题点。幸运的是这时可以通过阻抗匹配端接解决问题。如果阻抗变化发生两次,例如线宽从8mil变到6mil后,拉出2cm后又变回8mil。那么在2cm长6mil宽线条的两个端点处都会发生反射,一次是阻抗变大,发生正反射,接着阻抗变小,发生负反射。如果两次反射间隔时间足够短,两次反射就有可能相互抵消,从而减小影响。假设传输信号为1V,第Y次正反射有0.2V被反射,1.2V继续向前传输,第二次反射有 -0.2*1.2 = 0.24v被反射回。再假设6mil线长度极短,两次反射几乎同时发生,那么总的反射电压只有0.04V,小于5%这一噪声预算要求。因此,这种反射是否影响信号,有多大影响,和阻抗变化处的时延以及信号上升时间有关。研究及实验表明,只要阻抗变化处的时延小于信号上升时间的20%,反射信号就不会造成问题。如果信号上升时间为1ns,那么阻抗变化处的时延小于0.2ns对应1.2英寸,反射就不会产生问题。也就是说,对于本例情况,6mil宽走线的长度只要小于3cm就不会有问题。
解决EMI问题的办法很多,现代的EMI抑制方法包括:利用EMI抑制涂层、选用合适的EMI抑制零配件和EMI仿真设计等。本文从最基本的PCB布板出发,讨论PCB分层堆叠在控制EMI辐射中的作用和设计技巧。电源汇流排在IC的电源引脚附近合理地安置适当容量的电容,可使IC输出电压的跳变来得更快。然而,问题并非到此为止。由于电容呈有限频率响应的特性,这使得电容无法在全频带上生成干净地驱动IC输出所需要的谐波功率。除此之外,电源汇流排上形成的瞬态电压在去耦路径的电感两端会形成电压降,这些瞬态电压就是主要的共模EMI干扰源。我们应该怎么解决这些问题?就我们电路板上的IC而言,IC周围的电源层可以看成是优良的高频电容器,它可以收集为干净输出提供高频能量的分立电容器所泄漏的那部份能量。此外,优良的电源层的电感要小,从而电感所合成的瞬态信号也小,进而降低共模EMI。当然,电源层到IC电源引脚的连线必须尽可能短,因为数位信号的上升沿越来越快,最好是直接连到IC电源引脚所在的焊盘上,这要另外讨论。为了控制共模EMI,电源层要有助于去耦和具有足够低的电感,这个电源层必须是一个设计相当好的电源层的配对。有人可能会问,好到什么程度才算好?问题的答案取决于电源的分层、层间的材料以及工作频率(即IC上升时间的函数)。通常,电源分层的间距是6mil,夹层是FR4材料,则每平方英寸电源层的等效电容约为75pF。显然,层间距越小电容越大。