上海电路板组装测试随着集成电路输出开关速度提高以及PCB板密度增加,信号完整性已经成为高速数字PCB设计必须关心的问题之一。专业电路板组装测试元器件和PCB板的参数、元器件在PCB板上的布局、高速信号的布线等因素,都会引起信号完整性问题,导致系统工作不稳定,甚至完全不工作。如何在PCB板的设计过程中充分考虑到信号完整性的因素,并采取有效的控制措施,已经成为当今PCB设计业界中的一个热门课题。基于信号完整性计算机分析的高速数字PCB板设计方法能有效地实现PCB设计的信号完整性。1. 信号完整性问题概述信号完整性(SI)是指信号在电路中以正确的时序和电压作出响应的能力。如果电路中信号能够以要求的时序、持续时间和电压幅度到达IC,则该电路具有较好的信号完整性。反之,当信号不能正常响应时,就出现了信号完整性问题。从广义上讲,信号完整性问题主要表现为5个方面:延迟、反射、串扰、同步切换噪声(SSN)和电磁兼容性(EMI)。延迟是指信号在PCB板的导线上以有限的速度传输,信号从发送端发出到达接收端,其间存在一个传输延迟。信号的延迟会对系统的时序产生影响,在高速数字系统中,传输延迟主要取决于导线的长度和导线周围介质的介电常数。另外,当PCB板上导线(高速数字系统中称为传输线)的特征阻抗与负载阻抗不匹配时,信号到达接收端后有一部分能量将沿着传输线反射回去,使信号波形发生畸变,甚至出现信号的过冲和下冲。信号如果在传输线上来回反射,就会产生振铃和环绕振荡。
(一) 细节决定成败PCB设计是一个细致的工作,需要的就是细心和耐心。刚开始做设计的新手经常犯的错误就是一些细节错误。器件管脚弄错了,器件封装用错了,管脚顺序画反了等等,有些可以通过飞线来解决,有些可能就让一块板子直接变成了废品。画封装的时候多检查一遍,投板之前把封装打印出来和实际器件比一下,多看一眼,多检查一遍不是强迫症,只是让这些容易犯的低级错误尽量避免。否则设计的再好看的板子,上面布满飞线,也就远谈不上优秀了。(二) 学会设置规则其实现在不光高级的PCB设计软件需要设置布线规则,一些简单易用的PCB工具同样可以进行规则设置。人脑毕竟不是机器,那就难免会有疏忽有失误。所以把一些容易忽略的问题设置到规则里面,让电脑帮助我们检查,尽量避免犯一些低级错误。另外,完善的规则设置能更好的规范后面的工作。所谓磨刀不误砍柴工,板子的规模越复杂规则设置的重要性越突出。现在很多EDA工具都有自动布线功能,如果规则设置足够详细,让工具自己帮你去设计,你在一旁喝杯咖啡,不是更惬意的事情吗?(三) 为别人考虑的越多,自己的工作越少在进行PCB设计的时候,尽量多考虑一些最终使用者的需求。比如,如果设计的是一块开发板,那么在进行PCB设计的时候就要考虑放置更多的丝印信息,这样在使用的时候会更方便,不用来回的查找原理图或者找设计人员支持了。如果设计的是一个量产产品,那么就要更多的考虑到生产线上会遇到的问题,同类型的器件尽量方向一致,器件间距是否合适,板子的工艺边宽度等等。这些问题考虑的越早,越不会影响后面的设计,也可以减少后面支持的工作量和改板的次数。看上去开始设计上用的时间增加了,实际上是减少了自己后续的工作量。在板子空间信号允许的情况下,尽量放置更多的测试点,提高板子的可测性,这样在后续调试阶段同样能节省更多的时间,给发现问题提供更多的思路。(四) 画好原理图很多工程师都觉得layout工作更重要一些,原理图就是为了生成网表方便PCB做检查用的。其实,在后续电路调试过程中原理图的作用会更大一些。无论是查找问题还是和同事交流,还是原理图更直观更方便。另外养成在原理图中做标注的习惯,把各部分电路在layout的时候要注意到的问题标注在原理图上,对自己或者对别人都是一个很好的提醒。层次化原理图,把不同功能不同模块的电路分成不同的页,这样无论是读图还是以后重复使用都能明显的减少工作量。使用成熟的设计总是要比设计新电路的风险小。每次看到把所有电路都放在一张图纸上,一片密密麻麻的器件,脑袋就能大一圈。
高速数字PCB板的等线长是为了使各信号的延迟差保持在一个范围内,保证系统在同一周期内读取的数据的有效性(延迟差超过一个时钟周期时会错读下一周期的数据),一般要求延迟差不超过1/4时钟周期,单位长度的线延迟差也是固定的,延迟跟线宽,线长,铜厚,板层结构有关,但线过长会增大分布电容和分布电感,使信号质量,所以时钟IC引脚一般都接RC端接,但蛇形走线并非起电感的作用,相反的,电感会使信号中的上升元中的高次谐波相移,造成信号质量恶化,所以要求蛇形线间距最少是线宽的两倍,信号的上升时间越小就越易受分布电容和分布电感的影响.因为应用场合不同具不同的作用,如果蛇形走线在电脑板中出现,其主要起到一个滤波电感的作用,提高电路的抗干扰能力,电脑主机板中的蛇形走线,主要用在一些时钟信号中,如CIClk,AGPClk,它的作用有两点:1、阻抗匹配 2、滤波电感。对一些重要信号,如INTEL HUB架构中的HUBLink,一共13根,跑233MHz,要求必须严格等长,以消除时滞造成的隐患,绕线是解决办法。一般来讲,蛇形走线的线距>=2倍的线宽。PCI板上的蛇行线就是为了适应PCI 33MHzClock的线长要求。若在一般普通PCB板中,是一个分布参数的 LC滤波器,还可作为收音机天线的电感线圈,短而窄的蛇形走线可做保险丝等等.
一、快速确定PCB外形设计PCB先要确定电路板的外形,通常就是在禁止布线层画出电气的布线范围。除非有特殊要求,一般电路板的形状都为矩形,长宽比一般为3:2或者4:3较为理想。在画之前可以任意画出两条横线和两条竖线,然后利用“放置工具条”里的“设置原点”工具将某一条线段的端点设为原点即坐标为(0,0),之后双击每一条线段,对其起点和终点的坐标值进行相应的更改,使4条线段首尾相接,形成一个封闭的矩形框,电路板的外型确定也就完成了。如果在画图的过程中需要调整电路板的大小,只要修改每条线段的相应坐标值即可。从成本、敷铜线长度、抗噪声能力考虑,电路板尺寸越小越好,但是板尺寸太小,则散热不良,且相邻的导线容易引起干扰。不过,当电路板的尺寸大于200mm×150mm时,应该考虑电路板的机械强度,适当加装固定孔,以便起到支撑的作用。二、元件布局开始布局之前首先要通过网络表载入元器件,这个过程中经常会遇到网络表无法完全载入的错误,主要可归为两类:一类是找不到元件,解决方法是确认原理图中已定义元件的封装形式,并确认已添加相应的PCB元件库,若仍找不到元件就要自己造一个元件封装了;另一类是丢失引脚,最常见的就是二极管、三极管的引脚丢失,这是由于原理图中的引脚一般是字母A、K、E、B、C,而PCB元件的引脚则是数字1、2、3,解决方法就是更改原理图的定义,或者更改PCB元件的定义使其一致即可。有经验的设计者一般都会根据实际元件的封装外形建立一个自己的PCB元件库,使用方便而且不易出错。进行布局时,必须要遵循一些基本规则:(1)特殊元件特殊考虑高频元件之间要尽量靠近,连线越短越好;具有高电位差的元件之间距离尽量加大;重量大的元器件应该有支架固定;发热的元件应远离热敏元件并加装相应的散热片或置于板外;电位器、可调电感线圈、可变电容、微动开关等可调元件的布局应该考虑整机的结构要求,以方便调节为准。总之,一些特殊的元器件在布局时要从元件本身的特性、机箱的结构、维修调试的方便性等多方面综合考虑,以保证做出一块稳定、好用的PCB板。
随着PCB设计复杂度的逐步提高,对于信号完整性的分析除了反射,串扰以及EMI之外,稳定可靠的电源供应也成为设计者们重点研究的方向之一。尤其当开关器件数目不断增加,核心电压不断减小的时候,电源的波动往往会给系统带来致命的影响,于是人们提出了新的名词:电源完整性,简称PI(powerintegrity)。当今国际市场上,IC设计比较发达,但电源完整性设计还是一个薄弱的环节。因此本文提出了PCB板中电源完整性问题的产生,分析了影响电源完整性的因素并提出了解决PCB板中电源完整性问题的优化方法与经验设计,具有较强的理论分析与实际工程应用价值。二、电源噪声的起因及分析对于电源噪声的起因我们通过一个与非门电路图进行分析。图1中的电路图为一个三输入与非门的结构图,因为与非门属于数字器件,它是通过“1”和“0”电平的切换来工作的。随着IC技术的不断提高,数字器件的切换速度也越来越快,这就引进了更多的高频分量,同时回路中的电感在高频下就很容易引起电源波动。如在图1中,当与非门输入全为高电平时,电路中的三极管导通,电路瞬间短路,电源向电容充电,同时流入地线。此时由于电源线和地线上存在寄生电感,我们由公式V=LdI/dt可知,这将在电源线和地线上产生电压波动,如图2中所示的电平上升沿所引入的ΔI噪声。当与非门输入为低电平时,此时电容放电,将在地线上产生较大的ΔI噪声;而电源此时只有电路的瞬间短路所引起的电流突变,由于不存在向电容充电而使电流突变相对于上升沿来说要小。从对与非门的电路进行分析我们知道,造成电源不稳定的根源主要在于两个方面:一是器件高速开关状态下,瞬态的交变电流过大;
1. 从原理图到PCB的设计流程建立元件参数——>输入原理网表->设计参数设置->手工布局->手工布线->验证设计——>复查->CAM输出。2. 参数设置相邻导线间距必须能满足电气安全要求,而且为了便于操作和生产,间距也应尽量宽些。最小间距至少要能适合承受的电压,在布线密度较低时,信号线的间距可适当地加大,对高、低电平悬殊的信号线应尽可能地短且加大间距,一般情况下将走线间距设为8mil。焊盘内孔边缘到印制板边的距离要大于1mm,这样可以避免加工时导致焊盘缺损。当与焊盘连接的走线较细时,要将焊盘与走线之间的连接设计成水滴状,这样的好处是焊盘不容易起皮,而是走线与焊盘不易断开。3. 元器件布局实践证明,即使电路原理图设计正确,印制电路板设计不当,也会对电子设备的可靠性产生不利影响。例如,如果印制板两条细平行线靠得很近,则会形成信号波形的延迟,在传输线的终端形成反射噪声;由于电源、地线的考虑不周到而引起的干扰,会使产品的性能下降,因此,在设计印制电路板的时候,应注意采用正确的方法。每一个开关电源都有四个电流回路:◆ 电源开关交流回路◆ 输出整流交流回路◆ 输入信号源电流回路◆ 输出负载电流回路输入回路通过一个近似直流的电流对输入电容充电,滤波电容主要起到一个宽带储能作用;类似地,输出滤波电容也用来储存来自输出整流器的高频能量,同时消除输出负载回路的直流能量。所以,输入和输出滤波电容的接线端十分重要,输入及输出电流回路应分别只从滤波电容的接线端连接到电源;如果在输入/输出回路和电源开关/整流回路之间的连接无法与电容的接线端直接相连,交流能量将由输入或输出滤波电容并辐射到环境中去。电源开关交流回路和整流器的交流回路包含高幅梯形电流,这些电流中谐波成分很高,其频率远大于开关基频,峰值幅度可高达持续输入/输出直流电流幅度的5倍,过渡时间通常约为50ns。这两个回路最容易产生电磁干扰,因此必须在电源中其它印制线布线之前先布好这些交流回路,每个回路的三种主要的元件滤波电容、电源开关或整流器、电感或变压器应彼此相邻地进行放置,调整元件位置使它们之间的电流路径尽可能短。