通用banner
您当前的位置 : 首 页 > 企业分站

北京厂家FPC柔性版加工厂

2019-11-14
北京厂家FPC柔性版加工厂

北京厂家FPC柔性版一、快速确定PCB外形设计PCB先要确定电路板的外形,通常就是在禁止布线层画出电气的布线范围厂家FPC柔性版。除非有特殊要求,一般电路板的形状都为矩形,长宽比一般为3:2或者4:3较为理想。在画之前可以任意画出两条横线和两条竖线,然后利用“放置工具条”里的“设置原点”工具将某一条线段的端点设为原点即坐标为(0,0),之后双击每一条线段,对其起点和终点的坐标值进行相应的更改,使4条线段首尾相接,形成一个封闭的矩形框,电路板的外型确定也就完成了。如果在画图的过程中需要调整电路板的大小,只要修改每条线段的相应坐标值即可。从成本、敷铜线长度、抗噪声能力考虑,电路板尺寸越小越好,但是板尺寸太小,则散热不良,且相邻的导线容易引起干扰。不过,当电路板的尺寸大于200mm×150mm时,应该考虑电路板的机械强度,适当加装固定孔,以便起到支撑的作用。二、元件布局开始布局之前首先要通过网络表载入元器件,这个过程中经常会遇到网络表无法完全载入的错误,主要可归为两类:一类是找不到元件,解决方法是确认原理图中已定义元件的封装形式,并确认已添加相应的PCB元件库,若仍找不到元件就要自己造一个元件封装了;另一类是丢失引脚,最常见的就是二极管、三极管的引脚丢失,这是由于原理图中的引脚一般是字母A、K、E、B、C,而PCB元件的引脚则是数字1、2、3,解决方法就是更改原理图的定义,或者更改PCB元件的定义使其一致即可。有经验的设计者一般都会根据实际元件的封装外形建立一个自己的PCB元件库,使用方便而且不易出错。进行布局时,必须要遵循一些基本规则:(1)特殊元件特殊考虑高频元件之间要尽量靠近,连线越短越好;具有高电位差的元件之间距离尽量加大;重量大的元器件应该有支架固定;发热的元件应远离热敏元件并加装相应的散热片或置于板外;电位器、可调电感线圈、可变电容、微动开关等可调元件的布局应该考虑整机的结构要求,以方便调节为准。总之,一些特殊的元器件在布局时要从元件本身的特性、机箱的结构、维修调试的方便性等多方面综合考虑,以保证做出一块稳定、好用的PCB板。

北京厂家FPC柔性版加工厂

一个布局是否合理没有判断标准,可以采用一些相对简单的标准来判断布局的优劣。最常用的标准就是使飞线总长度尽可能短。一般来说,飞线总长度越短,意味着布线总长度也是越短(注意:这只是相对于大多数情况是正确的,并不是完全正确);走线越短,走线所占据的印制板面积也就越小,布通率越高。在走线尽可能短的同时,还必须考虑布线密度的问题。如何布局才能使飞线总长度最短并且保证布局密度不至于过高而不能实现是个很复杂的问题。因为,调整布局就是调整封装的放置位置,一个封装的焊盘往往和几个甚至几十个网络同时相关联,减小一个网络飞线长度可能会增长另一个网络的飞线长度。如何能够调整封装的位置到最佳点实在给不出太实用的标准,实际操作时,主要依靠设计者的经验观查屏幕显示的飞线是否简捷、有序和计算出的总长度是否最短。飞线是手工布局和布线的主要参考标准,手工调整布局时尽量使飞线走最短路径,手工布线时常常按照飞线指示的路径连接各个焊盘。Protel的飞线优化算法可以有效地解决飞线连接的最短路径问题。飞线的连接策略Protel提供了两种飞线连接方式供使用者选择:顺序飞线和最短树飞线。在布线参数设置中的飞线模式页可以设置飞线连接策略,应该选择最短树策略。动态飞线在有关飞线显示和控制一节中已经讲到: 执行显示网络飞线、显示封装飞线和显示全部飞线命令之一后飞线显示开关打开,执行隐含全部飞线命令后飞线显示开关关闭。

北京厂家FPC柔性版加工厂

1)专门用于探测的测试焊盘的直径应该不小于0.9mm 。2) 测试焊盘周围的空间应大于0.6mm 而小于5mm 。如果元器件的高度大于6. 7mm,那么测试焊盘应置于该元器件5mm 以外。3) 在距离印制电路板边缘3mm 以内不要放置任何元器件或测试焊盘。4) 测试焊盘应放在一个网格中2.5mm孔的中心。如果有可能,允许使用标准探针和一个更可靠的固定装置。5) 不要依靠连接器指针的边缘来进行焊盘测试。测试探针很容易损坏镀金指针。6) 避免镀通孔-印制电路板两边的探查。把测试顶端通过孔放到印制电路板的非元器件/焊接面上。

北京厂家FPC柔性版加工厂

解决EMI问题的办法很多,现代的EMI抑制方法包括:利用EMI抑制涂层、选用合适的EMI抑制零配件和EMI仿真设计等。本文从最基本的PCB布板出发,讨论PCB分层堆叠在控制EMI辐射中的作用和设计技巧。电源汇流排在IC的电源引脚附近合理地安置适当容量的电容,可使IC输出电压的跳变来得更快。然而,问题并非到此为止。由于电容呈有限频率响应的特性,这使得电容无法在全频带上生成干净地驱动IC输出所需要的谐波功率。除此之外,电源汇流排上形成的瞬态电压在去耦路径的电感两端会形成电压降,这些瞬态电压就是主要的共模EMI干扰源。我们应该怎么解决这些问题?就我们电路板上的IC而言,IC周围的电源层可以看成是优良的高频电容器,它可以收集为干净输出提供高频能量的分立电容器所泄漏的那部份能量。此外,优良的电源层的电感要小,从而电感所合成的瞬态信号也小,进而降低共模EMI。当然,电源层到IC电源引脚的连线必须尽可能短,因为数位信号的上升沿越来越快,最好是直接连到IC电源引脚所在的焊盘上,这要另外讨论。为了控制共模EMI,电源层要有助于去耦和具有足够低的电感,这个电源层必须是一个设计相当好的电源层的配对。有人可能会问,好到什么程度才算好?问题的答案取决于电源的分层、层间的材料以及工作频率(即IC上升时间的函数)。通常,电源分层的间距是6mil,夹层是FR4材料,则每平方英寸电源层的等效电容约为75pF。显然,层间距越小电容越大。

标签

上一篇:重庆厂家FPC柔性版加工厂2019-11-14

所有分类 首页 PCB板专区 SMT贴片专区 联系我们 新闻中心 收藏店铺