【第Y招】多层板布线高频电路往往集成度较高,布线密度大,采用多层板既是布线所必须,也是降低干扰的有效手段。在PCB Layout阶段,合理的选择一定层数的印制板尺寸,能充分利用中间层来设置屏蔽,更好地实现就近接地,并有效地降低寄生电感和缩短信号的传输长度,同时还能大幅度地降低信号的交叉干扰等,所有这些方法都对高频电路的可靠性有利。有资料显示,同种材料时,四层板要比双面板的噪声低20dB。但是,同时也存在一个问题,PCB半层数越高,制造工艺越复杂,单位成本也就越高,这就要求我们在进行PCB Layout时,除了选择合适的层数的PCB板,还需要进行合理的元器件布局规划,并采用正确的布线规则来完成设计。 【第二招】高速电子器件管脚间的引线弯折越少越好 高频电路布线的引线最好采用全直线,需要转折,可用45度折线或者圆弧转折,这种要求在低频电路中仅仅用于提高铜箔的固着强度,而在高频电路中,满足这一要求却可以减少高频信号对外的发射和相互间的耦合。 【第三招】高频电路器件管脚间的引线越短越好 信号的辐射强度是和信号线的走线长度成正比的,高频的信号引线越长,它就越容易耦合到靠近它的元器件上去,所以对于诸如信号的时钟、晶振、DDR的数据、LVDS线、USB线、HDMI线等高频信号线都是要求尽可能的走线越短越好。 【第四招】高频电路器件管脚间的引线层间交替越少越好 所谓“引线的层间交替越少越好”是指元件连接过程中所用的过孔(Via)越少越好。据侧,一个过孔可带来约0.5pF的分布电容,减少过孔数能显著提高速度和减少数据出错的可能性。
Via hole导通孔起线路互相连结导通的作用,电子行业的发展,同时也促进PCB的发展,也对印制板制作工艺和表面贴装技术提出更高要求。Via hole塞孔工艺应运而生,同时应满足下列要求:(一)导通孔内有铜即可,阻焊可塞可不塞;(二)导通孔内必须有锡铅,有一定的厚度要求(4微米),不得有阻焊油墨入孔,造成孔内藏锡珠;(三)导通孔必须有阻焊油墨塞孔,不透光,不得有锡圈,锡珠以及平整等要求。随着电子产品向“轻、薄、短、小”方向发展,PCB也向高密度、高难度发展,因此出现大量SMT、BGA的PCB,而客户在贴装元器件时要求塞孔,主要有五个作用:(一)防止PCB过波峰焊时锡从导通孔贯穿元件面造成短路;特别是我们把过孔放在BGA焊盘上时,就必须先做塞孔,再镀金处理,便于BGA的焊接。(二)避免助焊剂残留在导通孔内;(三)电子厂表面贴装以及元件装配完成后PCB在测试机上要吸真空形成负压才完成:(四)防止表面锡膏流入孔内造成虚焊,影响贴装;
1.布局首先,要考虑PCB尺寸大小。PCB尺寸过大时,印制线条长,阻抗增加,抗噪声能力下降,成本也增加;过小,则散热不好,且邻近线条易受干扰。在确定PCB尺寸后.再确定特殊元件的位置。最后,根据电路的功能单元,对电路的全部元器件进行布局。在确定特殊元件的位置时要遵守以下原则:(1)尽可能缩短高频元器件之间的连线,设法减少它们的分布参数和相互间的电磁干扰。易受干扰的元器件不能相互挨得太近,输入和输出元件应尽量远离。(2)某些元器件或导线之间可能有较高的电位差,应加大它们之间的距离,以免放电引出意外短路。带高电压的元器件应尽量布置在调试时手不易触及的地方。(3)应留出印制扳定位孔及固定支架所占用的位置。根据电路的功能单元.对电路的全部元器件进行布局时,要符合以下原则:(1)按照电路的流程安排各个功能电路单元的位置,使布局便于信号流通,并使信号尽可能保持一致的方向。(2)以每个功能电路的核心元件为中心,围绕它来进行布局。元器件应均匀、整齐、紧凑地排列在PCB上.尽量减少和缩短各元器件之间的引线和连接。(3)在高频下工作的电路,要考虑元器件之间的分布参数。一般电路应尽可能使元器件平行排列。这样,不但美观.而且装焊容易.易于批量生产。(4)位于电路板边缘的元器件,离电路板边缘一般不小于2mm。电路板的最佳形状为矩形。
专业线路板印制pcn设计问题集第Y部分从pcb如何选材到运用等一系列问题进行总结。1、如何选择PCB板材?选择PCB板材必须在满足设计需求和可量产性及成本中间取得平衡点。线路板印制加工厂设计需求包含电气和机构这两部分。通常在设计非常高速的PCB板子(大于GHz的频率)时这材质问题会比较重要。例如,现在常用的FR-4材质,在几个GHz的频率时的介质损耗(dielectric loss)会对信号衰减有很大的影响,可能就不合用。就电气而言,要注意介电常数(dielectric constant)和介质损在所设计的频率是否合用。2、如何避免高频干扰?避免高频干扰的基本思路是尽量降低高频信号电磁场的干扰,也就是所谓的串扰(Crosstalk)。可用拉大高速信号和模拟信号之间的距离,或加ground guard/shunt traces在模拟信号旁边。还要注意数字地对模拟地的噪声干扰。3、在高速设计中,如何解决信号的完整性问题?信号完整性基本上是阻抗匹配的问题。而影响阻抗匹配的因素有信号源的架构和输出阻抗(output impedance),走线的特性阻抗,负载端的特性,走线的拓朴(topology)架构等。解决的方式是靠端接(termination)与调整走线的拓朴。
在基于信号完整性计算机分析的PCB设计方法中,最为核心的部分就是PCB板级信号完整性模型的建立,这是与传统的设计方法的区别之处。SI模型的正确性将决定设计的正确性,而SI模型的可建立性则决定了这种设计方法的可行性。目前构成器件模型的方法有两种:一种是从元器件的电学工作特性出发,把元器件看成‘黑盒子’,测量其端口的电气特性,提取器件模型,而不涉及器件的工作原理,称为行为级模型。这种模型的代表是IBIS模型和S参数。其优点是建模和使用简单方便,节约资源,适用范围广泛,特别是在高频、非线性、大功率的情况下行为级模型是一个选择。缺点是精度较差,一致性不能保证,受测试技术和精度的影响。另一种是以元器件的工作原理为基础,从元器件的数学方程式出发,得到的器件模型及模型参数与器件的物理工作原理有密切的关系。SPICE 模型是这种模型中应用最广泛的一种。其优点是精度较高,特别是随着建模手段的发展和半导体工艺的进步和规范,人们已可以在多种级别上提供这种模型,满足不同的精度需要。缺点是模型复杂,计算时间长。一般驱动器和接收器的模型由器件厂商提供,传输线的模型通常从场分析器中提取,封装和连接器的模型即可以由场分析器提取,又可以由制造厂商提供。在电子设计中已经有多种可以用于PCB板级信号完整性分析的模型,其中最为常用的有三种,分别是SPICE、IBIS和Verilog-AMS、VHDL-AMS。