随着集成电路输出开关速度提高以及PCB板密度增加,信号完整性已经成为高速数字PCB设计必须关心的问题之一。元器件和PCB板的参数、元器件在PCB板上的布局、高速信号的布线等因素,都会引起信号完整性问题,导致系统工作不稳定,甚至完全不工作。如何在PCB板的设计过程中充分考虑到信号完整性的因素,并采取有效的控制措施,已经成为当今PCB设计业界中的一个热门课题。基于信号完整性计算机分析的高速数字PCB板设计方法能有效地实现PCB设计的信号完整性。1. 信号完整性问题概述信号完整性(SI)是指信号在电路中以正确的时序和电压作出响应的能力。如果电路中信号能够以要求的时序、持续时间和电压幅度到达IC,则该电路具有较好的信号完整性。反之,当信号不能正常响应时,就出现了信号完整性问题。从广义上讲,信号完整性问题主要表现为5个方面:延迟、反射、串扰、同步切换噪声(SSN)和电磁兼容性(EMI)。延迟是指信号在PCB板的导线上以有限的速度传输,信号从发送端发出到达接收端,其间存在一个传输延迟。信号的延迟会对系统的时序产生影响,在高速数字系统中,传输延迟主要取决于导线的长度和导线周围介质的介电常数。另外,当PCB板上导线(高速数字系统中称为传输线)的特征阻抗与负载阻抗不匹配时,信号到达接收端后有一部分能量将沿着传输线反射回去,使信号波形发生畸变,甚至出现信号的过冲和下冲。信号如果在传输线上来回反射,就会产生振铃和环绕振荡。
1.寄生电容过孔本身存在着对地或电源的寄生电容,如果已知过孔在内层上的隔离孔直径为D2;过孔焊盘的直径为D1;PCB的厚度为T;板基材的相对介电常数为ε;过孔的寄生电容延Κ了电路中信号的上升时问,降低了电路的速度。如果一块厚度为25mil的PCB,使用内径为10mil,焊盘直径为20mil的过孔,内层电气间隙宽度为32mil时,可以通过上面的公式近似算出过孔的寄生电容大致为0.259 pF。如果走线的特性阻抗为30Ω,则该寄生电容引起的信号上升时间延长量。系数1/2是因为过孔在走线的中途。从这些数值可以看出,尽管单个过孔的寄生电容引起的上升沿变缓的效用不是很明显,但是如果走线中多次使用过孔进行层间的切换,设计者还是要慎重考虑的。2.寄生电感过孔还具有与其高度和直径直接相关的串联寄生电感。若九是过孔的高度;d是中心钻孔的直径;则过孔的寄生电感L近似为在高速数字电路的设计中,寄生电感带来的危害超过寄生电容的影响。过孔的寄生串联电感会削弱旁路电容在电源或地平面滤除噪声的作用,减弱整个电源系统的滤波效用c因此旁路和去耦电容的过孔应该尽可能短,以使其电感值最小。通过上面对过孔寄生特性的分析,为了减小过孔的寄生效应带来的不利影响,在进行高速PCB设计时应尽量做到:· 尽量减少过孔,尤其是时钟信号走线;· 使用较薄的PCB有利于减小过孔的两种寄生参数;· 过孔阻抗应该尽可能与其连接的走线的阻抗相匹配,以便减小信号的反射;
从IC芯片的发展及封装形式来看,芯片体积越来越小、引脚数越来越多;同时,由于近年来IC工艺的发展,使得其速度也越来越高。这就带来了一个问题,即电子设计的体积减小导致电路的布局布线密度变大,而同时信号的频率还在提高,从而使得如何处理高速信号问题成为一个设计能否成功的关键因素。随着电子系统中逻辑复杂度和时钟频率的迅速提高,信号边沿不断变陡,印刷电路板的线迹互连和板层特性对系统电气性能的影响也越发重要。对于低频设计,线迹互连和板层的影响可以不考虑,但当频率超过50 MHz时,互连关系必须考虑,而在*定系统性能时还必须考虑印刷电路板板材的电参数。因此,高速系统的设计必须面对互连延迟引起的时序问题以及串扰、传输线效应等信号完整性(Signal Integrity,SI)问题。当硬件工作频率增高后,每一根布线网络上的传输线都可能成为发射天线,对其他电子设备产生电磁辐射或与其他设备相互干扰,从而使硬件时序逻辑产生混乱。电磁兼容性(Electromagnetic Compatibility,EMC)的标准提出了解决硬件实际布线网络可能产生的电磁辐射干扰以及本身抵抗外部电磁干扰的基本要求。1 高速数字电路设计的几个基本概念在高速数字电路中,由于串扰、反射、过冲、振荡、地弹、偏移等信号完整性问题,本来在低速电路中无需考虑的因素在这里就显得格外重要;另外,随着现有电气系统耦合结构越来越复杂,电磁兼容性也变成了一个不能不考虑的问题。要解决高速电路设计的问题,首先需要真正明白高速信号的概念。高速不是就频率的高低来说的,而是由信号的边沿速度决定的,一般认为上升时间小于4倍信号传输延迟时可视为高速信号。即使在工作频率不高的系统中,也会出现信号完整性的问题。这是由于随着集成电路工艺的提高,所用器件I/O端口的信号边沿比以前更陡更快,因此在工作时钟不高的情况下也属于高速器件,随之带来了信号完整性的种种问题。
湖北线路板印制一个高明的CAD工程师需要做的是:如何综合考虑各方意见,达到最佳结合点。以下为EDADOC专家根据个人在通讯产品PCB设计的多年经验,开发线路板印制所总结出来的层叠设计参考,与大家共享。 PCB层叠设计基本原则 CAD工程师在完成布局(或预布局)后,重点对本板的布线瓶径处进行分析,再结合EDA软件关于布线密度(PIN/RAT)的报告参数、综合本板诸如差分线、敏感信号线、特殊拓扑结构等有特殊布线要求的信号数量、种类确定布线层数;再根据单板的电源、地的种类、分布、有特殊布线需求的信号层数,综合单板的性能指标要求与成本承受能力,确定单板的电源、地的层数以及它们与信号层的相对排布位置。单板层的排布一般原则:A)与元件面相邻的层为地平面,提供器件屏蔽层以及为顶层布线提供回流平面;B)所有信号层尽可能与地平面相邻(确保关键信号层与地平面相邻);C)主电源尽可能与其对应地相邻;D)尽量避免两信号层直接相邻;