四川专业SMT插件在PCB(印制电路板)中,印制导线用来实现电路元件和器件之间电气连接,是PCB中的重要组件,SMT插件加工厂PCB导线多为铜线,铜自身的物理特性也导致其在导电过程中必然存在一定的阻抗,导线中的电感成分会影响电压信号的传输,而电阻成分则会影响电流信号的传输,在高频线路中电感的影响尤为严重,因此,在PCB设计中必须注意和消除印制导线阻抗所带来的影响。1印制导线产生干扰的原因PCB上的印制导线通电后在直流或交流状态下分别对电流呈现电阻或感抗,而平行导线之间存在电感效应,电阻效应,电导效应,互感效应;一根导线上的变化电流必然影响另一根导线,从而产生干扰;PCB板外连接导线甚至元器件引线都可能成为发射或接收干扰信号的天线。印制导线的直流电阻和交流阻抗可以通过公式和公式来计算,R=PL/S和XL=2πfL式中L为印制导线长度(m),s为导线截面积(mm2),ρ为铜的电阻率,TT为常数,f为交流频率。正是由于这些阻抗的存在,从而产生一定的电位差,这些电位差的存在,必然会带来干扰,从而影响电路的正常工作。2 PCB电流与导线宽度的关系PCB导线宽度与电路电流承载值有关,一般导线越宽,承载电流的能力越强。在实际的PCB制作过程中,导线宽度应以能满足电气性能要求而又便于生产为宜,它的最小值以承受的电流大小而定,导线宽度和间距可取0.3mm(12mil)。导线的宽度在大电流的情况下还要考虑其温升问题。PCB设计铜铂厚度、线宽
大量涉及蚀刻面的质量问题都集中在上板面被蚀刻的部分,而这些问题来自于蚀刻剂所产生的胶状板结物的影响。对这一点的了解是十分重要的,因胶状板结物堆积在铜表面上。一方面会影响喷射力,另一方面会阻档了新鲜蚀刻液的补充,使蚀刻的速度被降低。正因胶状板结物的形成和堆积,使得基板上下面的图形的蚀刻程度不同,先进入的基板因堆积尚未形成,蚀刻速度较快, 故容易被彻底地蚀刻或造成过腐蚀,而后进入的基板因堆积已形成,而减慢了蚀刻的速度。蚀刻设备的维护维护蚀刻设备的最关键因素就是要保证喷嘴的高清洁度及无阻塞物,使喷嘴能畅顺地喷射。阻塞物或结渣会使喷射时产生压力作用,冲击板面。而喷嘴不清洁,则会造成蚀刻不均匀而使整块电路板报废。明显地,设备的维护就是更换破损件和磨损件,因喷嘴同样存在着磨损的问题,所以更换时应包括喷嘴。此外,更为关键的问题是要保持蚀刻机没有结渣,因很多时结渣堆积过多会对蚀刻液的化学平衡产生影响。同样地,如果蚀刻液出现化学不平衡,结渣的情况就会愈加严重。蚀刻液突然出现大量结渣时,通常是一个信号,表示溶液的平衡出现了问题,这时应使用较强的盐酸作适当的清洁或对溶液进行补加。
线路板打样本身的基板是由隔热、并不易弯曲的材质所制作成。在表层能够看到的很小线路材料是铜箔,原本铜箔是覆盖在整个线路板板上的,并且在生产过程中部份被蚀刻掉,留下来的就变成网状的细小线路了。这些线路被称作导线或称布线,用来提供线路板上零件的电路连接。通常PCB板的颜色都是棕色或是绿色,这是阻焊漆的颜色。是绝缘的防护层,可以保护铜线,也可以防止零件被焊到错误的地方。现在显卡和主板上都是多层板,很大程度上可以增加布线的面积。多层板用上了更多单或双面的布线板,并在每层板间放进一层绝缘层后压合。PCB板的层数就代表了有几层独立的布线层,通常层数都是偶数,并且包含最外侧的两层,常见的PCB板一般是4~8层的结构。很多PCB板的层数可以通过观看PCB板的切面看出来。但实际上,没有人能有这么好的眼力。所以,下面再教大家一种方法。多层板打样的电路连接是通过埋孔和盲孔技术,主板和显示卡大多使用4层的PCB板,也有些是采用6、8层,甚至10层的PCB板。要想看出是PCB有多少层,通过观察导孔就可以辩识,因为在主板和显示卡上使用的4层板是第1、第4层走线,其他几层另有用途(地线和电源)。所以,同双层板一样,导孔会打穿PCB板。如果有的导孔在PCB板正面出现,却在反面找不到,那么就一定是6/8层板了。如果PCB板的正反面都能找到相同的导孔,自然就是4层板了。把主板对着有光处,看到导孔的位置,如果能透光,这就是8/6层板,否就是四层板.
一、PCB沉金采用的是化学沉积的方法,通过化学氧化还原反应的方法生成一层镀层,一般厚度较厚,是化学镍金金层沉积方法的一种,可以达到较厚的金层。二、PCB镀金采用的是电解的原理,也叫电镀方式。其他金属表面处理也多数采用的是电镀方式。在实际产品应用中,90%的金板是沉金板,因为镀金板焊接性差是他的致命缺点,也是导致很多公司放弃镀金工艺的直接原因!沉金工艺在印制线路表面上沉积颜色稳定,光亮度好,镀层平整,可焊性良好的镍金镀层。基本可分为四个阶段:前处理(除油,微蚀,活化、后浸),沉镍,沉金,后处理(废金水洗,DI水洗,烘干)。沉金厚度在0.025-0.1um间。金应用于电路板表面处理,因为金的导电性强,抗氧化性好,寿命长,而镀金板与沉金板最根本的区别在于,镀金是硬金(耐磨),沉金是软金(不耐磨)。1、沉金与镀金所形成的晶体结构不一样,沉金对于金的厚度比镀金要厚很多,沉金会呈金黄色,较镀金来说更黄(这是区分镀金和沉金的方法之一),镀金的会稍微发白(镍的颜色)。2、沉金与镀金所形成的晶体结构不一样,沉金相对镀金来说更容易焊接,不会造成焊接不良。沉金板的应力更易控制,对有邦定的产品而言,更有利于邦定的加工。同时也正因为沉金比镀金软,所以沉金板做金手指不耐磨(沉金板的缺点)。3、PCB沉金板只有焊盘上有镍金,趋肤效应中信号的传输是在铜层不会对信号有影响。4、沉金较镀金来说晶体结构更致密,不易产成氧化。5、随着电路板加工精度要求越来越高,线宽、间距已经到了0.1mm以下。镀金则容易产生金丝短路。沉金板只有焊盘上有镍金,所以不容易产成金丝短路。6、沉金板只有焊盘上有镍金,所以线路上的阻焊与铜层的结合更牢固。工程在作补偿时不会对间距产生影响。7、对于要求较高的板子,平整度要求要好,一般就采用沉金,沉金一般不会出现组装后的黑垫现象。沉金板的平整性与使用寿命较镀金板要好。所以目前大多数工厂都采用了沉金工艺生产金板。但是沉金工艺比镀金工艺成本更贵(含金量更高),所以依然还有大量的低价产品使用镀金工艺。
pcn设计问题集一部分从pcb如何选材到运用等一系列问题进行总结。1、如何选择PCB板材?选择PCB板材必须在满足设计需求和可量产性及成本中间取得平衡点。设计需求包含电气和机构这两部分。通常在设计非常高速的PCB板子(大于GHz的频率)时这材质问题会比较重要。例如,现在常用的FR-4材质,在几个GHz的频率时的介质损耗(dielectric loss)会对信号衰减有很大的影响,可能就不合用。就电气而言,要注意介电常数(dielectric constant)和介质损在所设计的频率是否合用。2、如何避免高频干扰?避免高频干扰的基本思路是尽量降低高频信号电磁场的干扰,也就是所谓的串扰(Crosstalk)。可用拉大高速信号和模拟信号之间的距离,或加ground guard/shunt traces在模拟信号旁边。还要注意数字地对模拟地的噪声干扰。3、在高速设计中,如何解决信号的完整性问题?信号完整性基本上是阻抗匹配的问题。而影响阻抗匹配的因素有信号源的架构和输出阻抗(output impedance),走线的特性阻抗,负载端的特性,走线的拓朴(topology)架构等。解决的方式是靠端接(termination)与调整走线的拓朴。
这里主要是说了从PCB设计封装来解析选择元件的技巧。元件的封装包含很多信息,包含元件的尺寸,特别是引脚的相对位置关系,还有元件的焊盘类型。当然我们根据元件封装选择元件时还有一个要注意的地方是要考虑元件的外形尺寸。引脚位置关系:主要是指我们需要将实际的元件的引脚和PCB元件的封装的尺寸对应起来。我们选择不同的元件,虽然功能相同,但是元件的封装很可能不一样。我们需要保证PCB焊盘尺寸位置正确才能保证元件能正确焊接。焊盘的选择:这个是我们需要考虑的比较多的地方。首先包括焊盘的类型。其类型包括两种,一是电镀通孔,一种是表贴类型。我们需要考虑的因素有器件成本、可用性、器件面积密度和功耗等因数。从制造角度看,表贴器件通常要比通孔器件便宜,而且一般可用性较高。对于我们一般设计来说,我们选择表贴元件,不仅方便手工焊接,而且有利于查错和调试过程中更好的连接焊盘和信号。其次我们还应该注意焊盘的位置。因为不同的位置,就代表元件实际当中不同的位置。我们如果不合理安排焊盘的位置,很有可能就会出现一个区域元件过密,而另外一个区域元件很稀疏的情况,当然情况更糟糕的是由于焊盘位置过近,导致元件之间空隙过小而无法焊接,下面就是我失败的一个例子,我在一个光耦开关旁边开了通孔,但是由于它们的位置过近,导致光耦开关焊接上去以后,通孔无法再放置螺丝了。